A survey of robot learning from demonstrations for Human-Robot Collaboration
نویسنده
چکیده
Robot learning from demonstration (LfD) is a research paradigm that can play an important role in addressing the issue of scaling up robot learning. Since this type of approach enables non-robotics experts can teach robots new knowledge without any professional background of mechanical engineering or computer programming skills, robots can appear in the real world even if it does not have any prior knowledge for any tasks like a new born baby. There is a growing body of literature that employ LfD approach for training robots. In this paper, I present a survey of recent research in this area while focusing on studies for human-robot collaborative tasks. Since there are different aspects between stand-alone tasks and collaborative tasks, researchers should consider these differences to design collaborative robots for more effective and natural human-robot collaboration (HRC). In this regard, many researchers have shown an increased interest in to make better communication framework between robots and humans because communication is a key issue to apply LfD paradigm for human-robot collaboration. I thus review some recent works that focus on designing better communication channels/methods at the first, then deal with another interesting research method, Interactive/Active learning, after that I finally present other recent approaches tackle a more challenging problem, learning of complex tasks, in the last of the paper.
منابع مشابه
A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملCollaborative Learning of Hierarchical Task Networks from Demonstration and Instruction
We present an approach for learning complex procedural tasks from human demonstration. Our main innovation is to view the interaction between the human and the robot as a mixed-initiative collaboration. Our work utilizes hierarchical task networks to enable the robot to learn complex procedural tasks. Our contribution is to integrate hierarchical task networks and collaborative discourse theory...
متن کاملToward Probabilistic Safety Bounds for Robot Learning from Demonstration
Learning from demonstration is a popular method for teaching robots new skills. However, little work has looked at how to measure safety in the context of learning from demonstrations. We discuss three different types of safety problems that are important for robot learning from human demonstrations: (1) using demonstrations to evaluate the safety of a robot’s current policy, (2) using demonstr...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.08789 شماره
صفحات -
تاریخ انتشار 2017